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AN EXPLICIT FINITE~DIFFERENCE SCHEME FOR SOLVING THE
PROBLEMS OF FLOWS PAST BODIES BY THE FINITE DIFFERENCE METHOD

A. N. Minaylos

1. FExplicit schemes, in view of their simplicity, are used
widely in solving gas-dynamic:problems. As the number of inde-
pendent variables 1s increased, the volume of computational work
in caleculating one node of a mesh, as well as the number of nodes
as such, This leads to large cutlays of computer time, therefore
the problem of setting up an effective finite-difference scheme
becomes essential. This scheme must be simple, while satisfying
the requirements of approximation and stability.

P. D. Lax's well-known scheme is one of the simplest. Its
generalizations, weakening the effect of artificial viscosity by
using parameter «, were ‘examined in references /1 / and /2 7. Let
L stand for this scheme ﬁi;?. Its disadvantages are as follows.

When there 1s a large coefficient of viscosity (o 1s close
to zero and the scheme is close toc P. D. Lax's scheme), the
solution is raplidly ascertained, but contains a large error
caused by the presence of viscous terms; at this coefficient of
viscosity (o is close to unity) the solution becomes unstable.
Here we consgsider the linear relation bhetween steps of the network
7 and - h in terms of time and spatial variables, since given the
function 7 ~,h2 yielding a stable computation when « = 1, the
step in time is too small and the network is not economically
advantageous. Computation in reference éi;? with =step 7 ~h
and « = 1 was stable for a mesh with a small number of cells
(6 x 2) and with the stabilizing influence of a shock wave.
Another L - W scheme examined in 55;7 belongs to the class
investigated by P. D. Lax and B. Vendrov. It was used in the

# Numbers in the margin indicate pagination in the foreign text.
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study /3 / and gives more exact results than does scheme L. Fluc-
fuations 1n the shock wave front during the finding of the soluticon
by this scheme are small in amplitude, therefore the fiéld ils lesas
perturbed in the computational region and<thé'501Ution-finding
process proceeds more rapidly. Howévér, whén parameters are
computed at each node of the mesh under the scheme, considerably
more operations are required than by scheme L, since the second
derivatives in time are determined by differentiation of the
system of equations with respect to all independent wvariables.

The cumbersomeness of the expressions intensifles when spatial
flows are calculated.

This article deals with selecting a difference scheme such
that, by preserving the advantages of the L - ‘W scheme, would be
less cumbersome, and the number of arithmetical operations at
each step in it would be much fewer.

2. The proposed scheme N is a simplifiled variant of the
scheme used in /% 7. The scheme in /I / -- let us call it R —-
is a medificaticn of R. D. Richtmyer's scheme. This is a two-
step scheme of the predictor-corrector type, of second-order
accuracy.

Scheme N differs from Scheme R in that the spatlal derivative /120
at the second corrector-step, with intermedizte layer, is taken
only along one direction, while the derivatives of the cld layer
are used in the other,

Let us write out scheme N for the case of two spatial
variables s and n. We represent the system of gas-dynamic

equations as
Uy = U, U, t1y; | (1)

where U is the vector of the unknown functions, F is the operator
of the right-hand sides of the system, and Fh iz the difference
operator approgimating the operator F with approximation order 2.

As in scheme R, the calculation proceeds in twc stages.



First one calculates the values of the unknown functions at
an Yauxiliary layer coineciding with the layér t + v. In contrast
to the scheme R, these values are determined only at two points
lying on the same coordinate line with the central point (i, j).
Thus, the scheme is anisotropic and so it loses its commonality
in the sense that 1ts application necessitates selecting a specific
direction, that is, some knowledge of the solution of the problem.
In the problem of flow past a2 blunt body the points in the inter-
medigte layer are taken along the coordinate line s = const, that
is, along some arckdirected from the body te the shock wave.; It
1s precisely in this direction, as experience shows, that the
main fluectuations in the solution occur in the process of arriving
at the scoluticon. The correctness of this approach is confirmed
by practical calculations. The values at the auxiliary points
(i, j + 1/2) and 1, j ~ 1/2) are determined by the scheme L with

a= (;

u.  +0.

U o = ___l.:_’,_._._._.'_',.{:l“‘
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The subscript t is omitted in the expressions..

Formulas for the point (i, J + 1/2) were obtained from Egs.
(2) by adding unity to the subsecript j.

Then one determines the values of Fh at the point (i, j) in

the "old" layer t and at the intermediate layer ©t + 7.

Let us use the following formula tc determine the values in

the new layer ¢ + 7:
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In scheme L we must use the/ bdock of calculation of /121
operator Fh}three times (wlth allowance for the values of ﬁi,J-l/E
retalned from the calculation of the preceding polnt (i, j - 1)).

In the variant with p = 0, we must use the block for calculating,
operator Fh twice at one point.

Below is given a comparative table of the amount of computa-
tional work at one node of the mesh for different schemes (the
number of operations for a single use of the Fh operator calcula-

tion block is taken as unlty):

TABLE 1
Ll Lew R N |
Two §Dat1al derlvatlvesi 4168 +-5 -3
Three spatial derivativesi 1 | 12—14! 67 | 2-3

3. Analysls of the_simplified system shows that when 7 ~ h
the scheme N is unstable. The instability 1s caused by the terms



determining the derivatives with respect to the direction s in

layer t..°

process equlvalent to introducing artificial viscosity.

To stabilize the solution, let us use the smoothing

We note

that at the predictor step the method now containg terms with

artificial viscosity in P. D. Lax's scheme.
Let us look at the effect of different laws of smoothing
on the stabllity of the scheme L for a simple model equation:

Uptau, =0 (a8,

(4)

[+

Let us represent the scheme as u; =a - 55— tpm_y}-

The results of analysis by the spectral method are given 1n

Table 2:

TABLE 2

Smoothed value of u

Stabllity
conditions

1. ‘
o (“m.H -+ u",”l)

= (041 -t W + um.--.—l)

5 {um+1 + 4Ii'm % u{ﬂ__l)

TG (dmer + Bumtup )

Um

Unstable

The limiting values of r decrease with weakening of smocthing.

The example in the second row of Table 2 corresponds to

smoothing by the least~squares method, with the linear smoothing

polynomial constructed at three nodes belng specilied.

We can



see without difficulty that all these linear. forms of smoothing
retain values 1lying along a stralght line and convert‘the second-
order curve into a curve of sécond ordér with a shift proportional
to h2;
Actually, the formula fl22
ngér(am44—kum~kum_ﬂ==um-+»%~Hum+l—-um)+(um_,u-umn f

converts line mh into itself, and the curve m2h2 into m2h2 + h2/3.

The presence of this shift when the form of the shock wave !
being smoothed (close to a second-order curve) leads to a large
distortion of results, therefore smocthing based on infterpolation
employing a quadratic polynomial was uséd. In this case the
least-squares method, for the four nodes used, ylelds the smoothlng

formula given below for Egq. (5):

j2 Uy =3 Uy — #m)].

The scheme is stable when T < 0.288 h/a. Smoothing of this
type in fact was used to increase the stability of scheme N. In
the casze of three spatial varisbles smoothing is conducted
separately at each meridional half-plane by the formula

wp= by el g =y =30 e N
SRRl AR PR e ] U ) Ab

where 0 = X = 1;

Smoothing 1s used not at each step 7, but after a certaln
number of steps k > 1. Here the stability condition becomes more,
rigorous (when k = 2, by-scheme (5) 7 < (0.25/1)h).

| The values of k anhd X are selected empirically for the
individual variants. Usually k = 10-20, X_=‘O.5.~

4, Scheme N was used in censtructing, Jjointly with A. P.
Bazzhin and S. V. Pirogova, a pfogram for computing flow of a



supersonic stream past a blunt body'£§:7} " The parameters at the
boundaries were'calcuiated byTtﬁe method of characteristics close
%o the scheme of D. Moretty‘£3;7t " The internal nodes of the
solution domain Were‘computed under écheme N.

A large series of calculations of two-dimensional flows in
an ideal gas were made under this program {with constant ratio of
specific heat capacities), as well as in equilibrium-dissociating
alr. Flow past spheres, ellipsolds of rotation: of right and
elliptical cylinders, and bodles of revelution in which the
equation of the generatrix was in the form of a power monomial
was calculated. o o

Experience in use of the progran [3;7 - [7;7 confirméd that
it 18 effective with satisfactory accuracy {(errors of the order
of 2-4 percent). Below several results are presented.

Fig. 1 shows the velocity at the surface of ellipsoids of
revolution with ratic of axes a/b varying from zero (flat face)
to twa. The veloeclty is given with respect to the limiting
velocity and is plotted as a funcition of length of ellipsoid arc;
the radius of the middle of the ellipsoid (semiaxis b) i1s taken
as the unit of linear dimension. The curve in the case a = 0 1s
obtained by the methed of integral relations.

In Fig. 2 a comparison 1ls made of the patterns of shock waves;
streamlines, and lines of constant values of M number for flow
past elliptical cylinders with a ratio of ellipse axes equal to
unity {(right cylinder) and 1.5. The results correspond to the
values k| = 1.4 and M_ = 1.5. Calculation by the finite-difference
method for small supersonic M_ numbers 1ls difficult owing to the
poor ascertaining of the solufion (perturbations in the flow
field are weakened). In addition, we know that the accuracy of
the results of calculating plane flows is lower than for axi-
symmetric flows, owing to the greater distances from the body
surface to the shock wave. Therefore Fig. 2 illustrates the
results of "difficult” calculations. The deviation of the



values of Bernoulli's-integral,from'phé‘eXaot yalue deces nct

exceed 1.5 percent for these results. However, for small M_
numbers this intégral is ﬁsﬁally computeﬂyto.high accuracy, and

the accuracy of its compﬁtation is not a sﬁfficient condition for
the aceuracy of the réSults. Errors in thé calculation do not
exceed 3 percent, while the velocity of the shock wave at the end
of the computation, that 1s, the degree of "arrival'" at the variant

is not more than 0.02 V .
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Fig, 1.

It is precisely the criterion

of accuracy for the wave velocity
that requires extended computation
at low supersonic velocities, by
Increasing the number of steps four-five times with respect to
the time variable. In the reference /B 7/, the results of which
are shown in Fig. 2 with & dashed line, evidently this ecriterion
was not considered. The Tlow at M, = 1.5 was not established,
and the resulis contain large errors. For comparison, it is

sufflclent to examine the angle w between the streamline and

/123



Fig. 3

fthe sonie line at a point on
the shock wave (see Fig. 2).

The exact value obtained Fig. 4.

-85 z .

analytically is w w‘960;
the results of this present study is w = 89°; and the results of
reférence ig_?ﬁis approximately 60°. To enhance the accuracy of
w obtained in this study,requires more prolonged computation and
possibly finer subdivisgion of the computational domain in the
direction normal to the body.

V. I. Blagosklonov calculated flow past bodies of revoluticn /124
with generatrix in the form of a power monomlal r = 7™M (1/2 <= m < 1).
In Fig. 3 is shown the flow field for the variant with values
m=0.65, Kl = 1.4, and M_, = 8. The length of the lines M = const
is typically large compared with blunter bodies.

Fig. 4 shows the form of ashock wave, isomach, and isochof

for a body of revolution whose generatrix is given by the formula

= tgq-!,"vz..“f‘gi-

ac
| (j)
- auer ol (- P9- 8 S - 30 39 l-c~)

(‘—i |




Here .

were made by

Calculations of flow for bodies of this form
In these calculatlons use was made of the nonunifoerm

A, P. Kosykh,
subdivision of the computational domain in the physical plane in

the direction along the generatrix of the body {(along the x axis).

Corresponding to the variant shown in Fig,. Y are the following
values of the parameters: for body shape —- Rl = 0.6, Rz = 0.2,
@= 60°, n = 100, and zg = 0.5045; and for incident flow —- k| = 1.4

= 6.

and M
[ ]
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